

Parameterizing Gravity Drainage for Models of Sea Ice Passive Tracers and Salinity

Nicole Jeffery

Elizabeth Hunke, Adrian Turner, Scott Elliott, Mat Maltrud (LANL) Cecilia Bitz (UW)

This Talk

- How I came to develop a sea ice tracer model: biogeochemistry
- Gravity drainage in a tracer model: IceT, 2 ways
- Is there a preference?
- Gravity drainage in a salinity model: IceT-1, 2 ways
- A clear winner?
- Conclusions

Modeling the Physics Sea Ice Biogeochemistry

Things of concern...

- In brine tracer concentrations of Nutrients "passive tracers"
- Ocean/ice fluxes, fluxes from surface flooding and flushing
- Light (PAR) with depth
- Sea Ice Microphysics

Things not of concern...

- Don't need to Improve CICE model
- Don't need to solve for T(z,t) and S(z,t). Assume knowledge of T and S from model output or data

Richard Cullather Antarctic sea ice

Approach

- T(z,t) and S(z,t) define the "averaged" microstructure: brine averaged ρ_b , S_b , ϕ , Π
- Microstructure + gravity → Brine motion
- Passive tracers differ from S (active tracer) in that they move/mix with the brine but do not effect the motion
- However, a passive scalar without chemistry should evolve as salinity, if the evolution of ϕ is known.

Develop gravity drainage parameterization while avoiding conceptually challenging complications...

The microstructure drives desalination which in turn modifies the microstructure

Tracer transport in sea ice for large scale models: "volume averaging"

Brine/intrinsic average

Bulk average

$$[c] = \frac{1}{\mathcal{V}_b} \int_{\mathcal{V}_b} c dV \qquad \langle c \rangle = \frac{1}{\mathcal{V}} \int_{\mathcal{V}_b} c dV$$

- Continuity
- Stokes flow → Darcy's eqn.

$$< w > = -\frac{\Pi}{\mu} \left(\frac{\partial [P]}{\partial z} + \rho g \right)$$

- Advection-diffusion for passive tracer
 - -Terms appear which characterize the averaged microstructure: porosity ϕ , permeability Π
 - And terms appear which need closing...

$$<\tilde{c}\tilde{w}>$$

lce I

Darcy Velocity (flushing and

$$\phi \frac{\partial [c]}{\partial t} + \frac{\partial ([c] < w >)}{\partial z} + \frac{\partial < \tilde{c}\tilde{w} >}{\partial z} = \frac{\partial}{\partial z} \left(\phi D_m \frac{\partial [c]}{\partial z} \right)$$

Molecular diffusion

$$\frac{\partial}{\partial z} \left(\phi D_m \frac{\partial [c]}{\partial z} \right)$$

Gravity Drainage

Reynolds flux closure:
$$<\tilde{c}\tilde{w}>=-D\frac{\partial}{\partial z}[c]$$

Propose two parameterizations for the "Eddy" diffusivity:

Mixing Length Diffusivity

$$D_{ml} = \begin{cases} \frac{g\Pi_o}{\mu} \phi^3 \Delta \rho_b l & \text{if } \rho_b(z) \text{ is unstable} \\ 0 & \text{otherwise} \end{cases}$$

Enhanced Molecular Diffusivity

$$D_e = \begin{cases} \phi \mathcal{D}_e & \text{if } \frac{dh}{dt} > 0\\ 0 & \text{otherwise} \end{cases}$$

CICE as a Sophisticated Interpolator

Sea Ice T(z,t)2 different salinity evolutions

The Multi-Phase Physics of Sea Ice

8-10 September 2010

Santa Fe, NM

Me as a less sophisticated Interpolator

IceT solutions of [c] compared with brine salinity

I.a fixed 'C' S-profile← I.b linear decrease to 'C'

MLD $\sim \Delta \rho_b \phi^3$ EMD $\sim \phi$

Logarithmic decrease to 'C' S-profile →

MLD vs. EMD

After the Cottier et al. test problem, no clear preference.

- Some indications that EMD parameterization could fail in the salinity problem...
- Measurements of brine volume flux at the ice/ water boundary increase with dh/dt ~ MLD
- A Reynolds closure does the job.

Data from Wakatsuchi and Ono, 1983

The problem: to get the answer I need the answer.

CICE T

Unknown

<S> Forcing

1

IceT

Known [S] Brine Conc.

Unknown <S> Forcing

IceT-I

Known [S] Brine Conc.

CICE Unknown <S> Forcing IceT-I IceT Something completely Known [S] new and exciting! Brine conc.

IceT-I

Volume average continuity....

$$\left\langle \frac{\partial \rho}{\partial t} + \partial_i(\rho u_i) \right\rangle = 0$$

$$\frac{\partial [\phi(\rho_b - \rho_i)]}{\partial t} + \frac{\partial (\rho_b < w >)}{\partial z} + \frac{\partial < \tilde{\rho}\tilde{w} >}{\partial z} = 0$$

Brine density (ρ_b), ice density (ρ_i), Bulk velocity (<w>), porosity (ϕ)

IceT-I MLD

Parameters depend on T, dh/dt, h

$$\frac{\partial \langle S \rangle}{\partial t} = W_b \frac{\partial \langle S \rangle}{\partial z} + ((\rho_b - \rho_i)B(T))^{-1} \left\{ \frac{\partial (\mathcal{V}_{ml} \langle S \rangle^3)}{\partial z} + \mathcal{C} \right\}$$

Boundary velocity

Flushing

Gravity drainage

$$\frac{\partial \langle S \rangle}{\partial t} = W_b \frac{\partial \langle S \rangle}{\partial z} + ((\rho_b - |\rho_i)B(T))^{-1} \left\{ \frac{\partial (\mathcal{V}_e \langle S \rangle)}{\partial z} + \mathcal{C} \right\}$$

IceT-I EMD

IceT-I MLD

Parameters depend on T, dh/dt, h

$$\frac{\partial \langle S \rangle}{\partial t} = W_b \frac{\partial \langle S \rangle}{\partial z} + ((\rho_b - \rho_i)B(T))^{-1} \left\{ \frac{\partial (\mathcal{V}_{ml} \langle S \rangle^3)}{\partial z} + \mathcal{C} \right\}$$

Boundary velocity

Flushing

Gravity drainage

$$\frac{\partial[c]}{\partial t} = W_b \frac{\partial(\phi[c])}{\partial z} + \frac{\partial}{\partial z} \left(a\Delta\rho\phi^3 \frac{\partial[c]}{\partial z} \right) - \langle w \rangle \frac{\partial[c]}{\partial z}$$

$$> \frac{\bullet}{\partial [c]}$$

Parameters depend on T, dh/dt, h and <S>

The Multi-Phase Physics of Sea Ice

The Multi-Phase Physics of Sea Ice

8-10 September 2010

Conclusions

- R. Gradinger
- Passive tracer problem is conceptually simpler.
 Gravity drainage velocity-tracer fluctuations may be parameterized using a Reynolds flux closure.
- Passive tracer problem is less sensitive to the form of the diffusivity (both EMD and MLD work well for some problems), however knowledge of S is required.
- Solution of bulk salinity comes from the inverse model. Diffusion becomes a (non)linear advection term.
- EMD does not have adequate sensitivity to model gravity drainage, however MLD is promising.
- With current CICE output (T, dh/dt, h), we can solve for S and passive tracer brine concentration.
- 2-way coupling with CICE through $T_{\rm mlt}$ and K works but hasn't been fully tested.